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Abstract

Frequency modulation of an atomic force microscope is based on a PI control law, which keeps the
amplitude equal to a desired value. This paper analyses the stability and performance of the closed-loop
nonlinear dynamics of AFM. Numerical results are presented to corroborate the validity of theoretical
analysis.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Atomic force microscope [1] has provided the foundation for the development of
nanotechnology. The principle of an atomic force microscope (AFM) is based on the changes
in vibration characteristics of a cantilever beam due to forces between cantilever tip and the
sample. Because these forces are inter-atomic in nature, it is not required that the sample be an
electrically conducting surface. As a result, AFM is applicable to conducting and nonconducting
surfaces as well.
Binning and Quate [1] used changes in the amplitude of vibration due to changes in the force

between tip and sample at a constant frequency. But, for a higher sensitivity, Albrecht et al. [2]
proposed to measure changes in the frequency of vibration at a constant amplitude to determine
the force between the cantilever tip and sample. To maintain the constant amplitude of vibration,
see front matter r 2005 Elsevier Ltd. All rights reserved.
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cantilever vibration is feedback. A schematic diagram of the feedback system is shown by
Holscher [3].
There are a number of papers dealing with the dynamic response of the AFM cantilever. The

system dynamics is nonlinear because of the nature of force between tip and sample. In general,
the method of harmonic balance has been applied to compute the frequency shift as a function of
the interaction force between tip and sample.
In this paper, the method of slowly varying parameters [4] has been used to examine the

nonlinear dynamics of AFM under PI feedback law. The method of slowly varying parameters
yields the dynamics of amplitude and phase of vibration, and therefore has been used to analyse
the stability and performance of the PI control law. In steady state, the method of slowly varying
parameters leads to same result as that obtained by the method of harmonic balance.
2. Analysis

Consider the model shown in Fig. 1. The differential equation of motion is

�kcðy � xÞ � bcð _y � _xÞ � F tsa ¼ mc €y, (1)

where F tsa is the attractive force between tip and sample given [5] by
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Fig. 1. Single-degree-of-freedom model.
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where H, R and a0 are Hamaker constant, tip radius and intermolecular distance, respectively.
The effective elastic modulus E� is defined as

E� ¼
1� n2t

Et

þ
1� n2s

Es

� ��1

, (3)

where Et and Es are Young’s moduli of elasticity for tip and sample, respectively. And, nt and ns

are Poisson’s ratios of tip and sample, respectively. When the separation between the tip and the
sample is greater than a certain distance a0, the force is called van der Waals force, and is
attractive in nature. For the tip–sample distance less than a0, the attractive force is reduced due to
Pauli and ionic repulsion [5].
Rearranging Eq. (1),

€y þ 2xcoc _y þ o2
cy þ o2

c

F tsa

kc

¼ F extðtÞ, (4)

where

F extðtÞ ¼ o2
cxðtÞ þ 2xcoc _x, (5)

o2
c ¼

kc

mc

, (6)

xc ¼
bc

2mcoc

. (7)

Assume that the solution of Eq. (4) is represented as

yðtÞ ¼ Y ðtÞ sinðot þ cðtÞÞ, (8)

where the amplitude Y ðtÞ and the phase cðtÞ are slowly varying functions of time. The frequency
o of the response is not known a priori.
Differentiating Eq. (8) with respect to time,

_y ¼ oY cos bþ _Y sin bþ _cY cos b. (9)

Now, it is assumed [4] that

_Y sin bþ _cY cosb ¼ 0. (10)

Then, from Eqs. (9) and (10),

_y ¼ oY cosb. (11)

Differentiating Eq. (11) again,

€y ¼ o _Y cosb� o2Y sinb� oY _c sinb. (12)

Substituting Eqs. (11) and (12) into Eq. (4),

ðo2
c � o2ÞY sin bþ o _Y cos b� oY _c sin bþ 2xcocoY cos bþ o2

c

F tsa

kc

¼ F extðtÞ. (13)
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Solving for _Y and _c from Eqs. (10) and (13),

o _Y ¼ �1
2
ðo2

c � o2ÞY sin 2b� xcocoY ð1þ cos 2bÞ � o2
c

F tsa

kc

cosbþ F extðtÞ cos b, (14)

oY _c ¼ 1
2
ðo2

c � o2ÞY ð1� cos 2bÞ þ xcocoY sin 2bþ o2
c

F tsa

kc

sinb� F extðtÞ sinb. (15)

Since the amplitude Y ðtÞ and the phase cðtÞ are slowly varying functions of time, it is assumed
that they are constants during a cycle of oscillation; i.e., b varying from 0 to 2p. Integrating
Eqs. (14) and (15) from 0 to 2p with this assumption,

2po _Y ¼ �2pxcocoY � o2
c

Z 2p

0

F tsa

kc

cos b dbþ

Z 2p

0

F extðtÞ cos b db, (16)

2poY _c ¼ pðo2
c � o2ÞY þ o2

c

Z 2p

0

F tsa

kc

sinb db�

Z 2p

0

F extðtÞ sinb db. (17)

Control law:
According to Gotsmann et al. [6], the PI control law is defined as

F extðtÞ ¼ Qyðt � tÞ, (18)

where

Q ¼ qpðY ðtÞ � Y 0Þ þ qI

Z t

0

ðY ðt0Þ � Y 0Þdt0. (19)

Substituting Eq. (18) into Eqs. (16) and (17),

2po _Y ¼ �2pxcocoY � o2
c

Z 2p

0

F tsa

kc

cos bdb� pQY sinot, (20)

2poY _c ¼ pðo2
c � o2ÞY þ o2

c

Z 2p

0

F tsa

kc

sinbdb� pQY cosot. (21)

Select

t ¼
p
2o

. (22)

Substituting Eq. (22) into Eqs. (20) and (21),

2po _Y ¼ �2pxcocoY � o2
c

Z 2p

0

F tsa

kc

cos bdb� pQY , (23)

2poY _c ¼ pðo2
c � o2ÞY þ o2

c

Z 2p

0

F tsa

kc

sinbdb. (24)

Define

W ðtÞ ¼

Z t

0

ðY ðt0Þ � Y 0Þdt0. (25)
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Then,

_W ¼ Y ðtÞ � Y 0 (26)

and

Q ¼ qpðY ðtÞ � Y 0Þ þ qI W ðtÞ. (27)

Substituting Eq. (27) into Eq. (23), the averaged nonlinear closed-loop dynamics can be
represented in the state space-form as follows:

2po _Y ¼ �2pxcocoY � o2
c

Z 2p

0

F tsa

kc

cosbdb� pqpðY ðtÞ � Y 0ÞY � pqI W ðtÞY , (28)

_W ¼ Y ðtÞ � Y 0, (29)

2poY _c ¼ pðo2
c � o2ÞY þ o2

c

Z 2p

0

F tsa

kc

sinbdb. (30)

Note that Eqs. (28)–(30) are in the form of a state-space model [7].
In steady state,

_Y ¼ 0; _W ¼ 0; _c ¼ 0. (31)

Hence, from Eq. (29), in steady state,

Y ðtÞ ¼ Y 0 (32)

and from Eq. (30),

o0 ¼ oc 1þ
1

pY 0

Z 2p

0

F tsa

kc

sinbdb
� �0:5

(33)

and from Eq. (28),

W 0 ¼
1

pqI Y 0
�2pxcocoY 0 � o2

c

Z 2p

0

F tsa

kc

cos bdb
� �

. (34)

Results from numerical integration indicate that

Z 2p

0

F tsa

kc

cos bdb 	 0. (35)

In Eqs. (33) and (34), integrals are defined for Y ðtÞ ¼ Y 0. To examine the stability of the steady-
state solution, small perturbations Ŷ ðtÞ and Ŵ ðtÞ are introduced; i.e.,

Y ðtÞ ¼ Y 0 þ Ŷ ðtÞ (36)

and

W ðtÞ ¼ W 0 þ Ŵ ðtÞ. (37)
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Substituting Eqs. (36) and (37) into Eqs. (28) and (29) and using Eq. (35), the following equations
are obtained after linearization:

_̂
Y
_̂

W

" #
¼

�
qpY 0

2o0
�

qI Y 0

2o0

1 0

2
4

3
5 Ŷ

Ŵ

" #
. (38)

The characteristic equation for the linearized dynamic equations (38) is

l2 þ
qpY 0

2o0
lþ

qI Y 0

2o0
¼ 0. (39)

Hence, the necessary and sufficient conditions for the stability are

qp40 and qI40. (40)

Natural frequency and damping ratio for the amplitude dynamics can be defined as

oY ¼

ffiffiffiffiffiffiffiffiffiffiffi
qI Y 0

2o0

r
and xY ¼

qp

2
ffiffiffiffiffi
qI

p

ffiffiffiffiffiffiffiffi
Y 0

2o0

r
. (41)

For a critically damped closed-loop system,

qp ¼ 2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
qIo0

Y 0

r
. (42)
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Fig. 2. Frequency versus minimum airgap.
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Fig. 3. Amplitude versus time under PI feedback control: ——, xY ¼ 0:5; - - -, xY ¼ 1; - � -, xY ¼ 1:5.

A. Sinha / Journal of Sound and Vibration 288 (2005) 387–394 393
3. Numerical results

Numerical results are obtained for following parameter values: mc ¼ 2:0678
 10�12 kg,
kc ¼ 10 N=m, xc ¼ 0:001, z ¼ 2
 10�9 m, a0 ¼ 0:166
 10�9 m, R ¼ 15
 10�9 m, Et ¼ 1:29

1011 N=m2, nt ¼ 0:28, Es ¼ 7
 1010 N=m2, ns ¼ 0:3.
In Fig. 2, the frequency o is plotted as a function of the minimum airgap during the tip

oscillation, which equals z � Y . As Y increases, the minimum airgap decreases, and the frequency
decreases because of a decrease in the equivalent spring stiffness. After the minimum gap
decreases beyond a0, frequency increases due to a reduction in attractive force.
In Fig. 3, responses from the numerical integration of Eqs. (28) and (29) are plotted. It is seen

that the perturbation in the amplitude from Y 0 ¼ 1:5
 10�9 m dies out, which corroborates the
stability of the closed-loop system. Furthermore, as predicted by the linearized analysis, the
response is underdamped (xY ¼ 0:5), critically damped (xY ¼ 1:0) or overdamped (xY ¼ 1:5).
4. Conclusions

The method of slowly varying parameters has been successfully applied to derive the state-space
model of nonlinear dynamics of an AFM cantilever under PI feedback control, where feedback
coefficients are functions of the amplitude of vibration. With the help of this state-space model,
the stability and performance of the control system have been analysed.
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